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If both tl and t2 are much larger than TN’ Eg. 5-50 reduces to

y

ClB CZB
Rm Rm
T + T = 1 (5-51)
1l - — 1 - —
2u 2u
If both tl and t2 are much smaller than TN' Eg. 5-50 reduces to
ClB CZB
R R
e T =1 (5-52)
N st N st
wtl ﬂtz

The maximum error in this procedure occurs when an
extremely short pulse is combined with an infinitely long one
(see Fig. 5-14). For this case, a better approximation is ob-
tained if the sum of the kinetic energy imparted by the impulse
and the work done by the gquasi-static pressure is equated to the
strain energy in the system, i.e.,

2
.j;EﬁffEJ + C,BX_ =R X - Ene
2M 2 'm™m 2

27m
Making the same substitutions as were made for Eq. 5-43 and re-

(5-53)

arranging terms, it is found that

2
C,.B/R C,B/R
7F;L__JE_ + _Z__%% = 1 (5-54)
N 1 - —
'I—T—EI VZ}J—]_ 2].1

where the subscript 1 refers to the impulse component and all
other terms are as previously defined.

Load
.
ClB
t ——
1
C2B :
1 —
tl |
Figure 5-14. Impulsive Load Plus Long Duration Component
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Although Eq. 5-54 is derived for a constant ampli-
tude second pulse, it can be applied to other loadings where the
duration of the initial pulse is less than one-fifth the period
and the duration of the second pulse is greater than 10 times
the period'of the system. Alternatively, Eq. 5-55 can be used
for those loadings where the initial pulse is less than one-
fifth the period and the second pulse has a long, but finite
duration.

C,B C,B
R R
—— m + m — =1 (5-55)
N /=T Ty 1 -5
Tt H —— y2u-1 + H
71 A ﬂtz TN
1+ 0.7 —
t;

Appendix B includes charts of Eg. 5-54 which can be used for

preliminary design or analysis.

The equations of this section and response charts
of Appendix B can be used in two ways. If the properties of the
system and load characteristics are specified, the maximum response
can be obtained directly in terms of the ductility ratio,F .
For a single pulse approximation of the loading, the determin-
ation of response is straightforward. For multiple triangle
approximations of the loading, it will be necessary to either
assume various values of p until the appropriate equation from
Egs. 5-49 through 5-55 is satisfied or to solve the equation

L

for u.

If only the load characteristics and a desired
maximum response are specified, an iterative process is re-
quired for design. 1In order to start the process, it is nec-
essary to assume some trial section properties. With these
properties, the system can be designed and its maximum re-
sponse obtained. If the required resistance is more than the
trial section resistance, the process must be repeated until
the required resistance is equal to or less than the trial

section resistance.
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Equations 5-37, 5-43, 5-44, and 5-47 through 5-55
are valid only if response extends beyond the elastic 1limit,
i.e., uw > 1. Inspection of these equations shows the benefit of
aliowing inelastic response to take place. Equation 5-37 indi-
cates that, if a large value of u is permitted, the required re-
sistance of the element may be equal to B. For elastic response
(u=1) the resistance must be equal to 2B. Equation 5-44 shows
that for the elastic case (u=1l), the required resistance is
equal to imN, but the required resistance approaches zerokas ]
increases. Note also that the load term "B¥ and the resistance
term "Rm" may be either total load and total resistance (B, Rm)
or unit load and unit resistance (Pr, rm).

It is sometimes important to determine the time
of maximum response.of the structural element. If the ordi~
nates of the loading and resistance functions are divided by
the mass, M, they can be plotted as shown in Fig. 5-15. The
loading ¢tan be considered an acceleration function and the
resistance a deceleration function. The area under either
plot is equal to the velocity change of the system due to
the loading or resistance of the element. Since the velocity
of the mass is equal to zero at th the areas under the load-
ing and resistance plots must be equal at this time. If one
diagram is subtracted from the other, the net area must be
equal to zero. If one area is subtracted from the other as
shown in Fig. 5-15, then A, must equal Az. Although the con-
cept is simple, a difficulty arises in determining the time,
te' to reach maximum resistance. An iterative technique, such
as numerical integration, can be used to determine te. Alterna-
tively, a rigid-plastic resistance, i.e., te=0, might be assumed
to obtain an approximation of tm. The percent error in such
an approximation decreases with increasing u. Figure 5-15(b)
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(c) Double Pulse Loading with Rigid-Plastic Resistance

Figure 5-15. Acceleration Versus Time Plots
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demonstrates how this technique might be applied to an im~
pulsive load superimposed on a gquasi-static type loading and
Fig. 5-15(c) applies the technique to a two-triangle repre-
sentation of the airblast loading. Assuming a rigid-plastic
resistance function, the areas under the loading and resistance

plots in Fig. 5-15(b) will be equal at tr i.e.,

ClBtl N C2Btm _ Rmtm (5-56)
2M M M
ox
C,Bt
£ = e (5-57)

m 2(Rm—CzB)

Assuming a rigid—plastic resistance function for the two tri-
angle loading shown in Fig. 5-15(c), the areas under the load-

ing and resistance functions can again be equated, i.e.,

C,Bt C.Bt

t. Rt
1771 . 2™ m m _ _mm _

Expanding Eg. 5-58 and solving for tﬁ, it is found that

0.5
C,B - R+ [(Rm - czs)2 + @2311)5(2:131:1)]

2

th T B - (5-59)

5.5.3 Numerical Integration

This analytical technigue obtains the response of
the system by numerical integration of the differential equa-
tion of motion. It is the most general and versatile method
of analysis for many problems of interest. It can be applied
to any system with a finite number of degrees of freedom and
can treat any force-displacement-time relationship, ranging
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from linear elastic td nonlinear, viscoelastic-plastic rela-
tions. Numerical integration has found wide application on
electronic computing devices for compiling the solutions to
simple problems, and for the rapid solution of problems in

the dynamics of complicated systems. For hand computation,
the method is best suited to systems of a few degrees of free-
dom with simple force-resistance relations, such as the bi-

linear elastic or elastic~-plastic resistances.
Rewriting Eg. 5-30 in the form

F(t) - KX

KLMMt

X = (5-60)
it is seen that if'F(t) and X are known at any particular in-
stant of time, the acceleration of the mass, M, can be calcu-
lated. The basis of the method of numerical integration is
the subdivision of time into intervals, At, and an assumption
of the nature of the variation of the aéceleration during the
time interval. The procedure recommended herein is presented
in Refs. 5~15 and 5-16. It is convenient to adopt the notation
developed in Ref. 5-15. TIf in’ in' X_r are the acceleration,
velocity and displacement, respectively, at time t = tn' then
the velocity and displacement of the mass at time t = tn + At

are given by

1

Xn+at = Xt 3 At(Xn + Xn+At) (5-61)
X S x o+ oAtk s D25, B (X ~ X_) (At) 2 (5-62)
n+At n n 2 n n+At n

If the variation of the acceleration over the time interwval
At is linear, B is taken equal to 1/6. If a constant accel-
eration equal to the average of X, and xn+At is assumed over

the time interval, B is taken equal to 1/4. Values of B of
0 and 1/12 can also be given simple geometric interpretations.

The method proceeds as follows. The acceleration,
velocity, and displacement at t = 0 are computed or obtained
from the given initial conditions. Then for t = At, the
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acceleration in+At is assumed. Using Egs. 5-61 and 5-62, the
velocity and displacement at time tn+At are computed. Knowing

the displacement X the resistance KX can be evaluated.

'
This value is thenn;ﬁgstituted into Eg. 5-60 and the assumed
acceleration checked. If the assumed and resultant accelera-
tion are not in agreement, the computed acceleration is used
for the next trial and the computational process repeated un-
til the procedure converges to the correct solution. When
convergence is obtained, the next time increment is added and

the process repeated.

The criteria which are important in the application
of numerical integration are convergence, rate of convergence,
stability, length of time interval, and choice of g. All of
these criteria are interrelated and have been studied fairly
extensively. The stability and convergence criteria for an
undamped single degree of freedom system will generally be
satisfied if the ratio At/TN is less than about 0.2. For
systems with several degrees of freedom, the stability and con-
vergence limits must be applied in terms of the natural period
of the highest mode of vibration, i.e., the minimum natural
period. The choice of a time interval also determines the
number of iterations required to properly describe structural
response and, therefore, affects the cost of the analysis in
terms of computer time. Another consideration is that the
time interval should be small enough to adequately describe
the time variation of the forcing function.

The choice of B governs the accuracy and ease of
application of the method. Extensive work in the application
of this method has resulted in the following conclusions. A
B = 1/6 is best suited for forced vibrations of systems with
damping and with initial velocity and displacement. The best
results in amplitude of response for an undamped system are
obtained using B = 1/4. A B = 1/12 gives the most rapid and
accurate results for an undamped system without initial
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velocity. For very rapid results, where accuracy is not of

primary importance, B = 0 often proves useful.

5.5.4 Spherical Chambers

Spherical chambers are used for some suppressive
shield applications where the fragment hazards are minimal.
If. it is assumed that the sphere responds ohly in the funda-
mental mode, it can be analyzed as a single degree of freedom
system using the techniques described earlier in this chapter.
Its elastic period of vibration is given by Eqg. 5-24. 1Its
staticvresistance can be obtained from Eq. 5-17 or 5-21.
Illustrative example 5.6.4 uses this approach to analyze a
Group 6A shield.

Peference 5-12 proposes an approximate expression
for the maximum stress in a spherical suppressive shield. It
is based on computer solutions of the differential equation of
motion for the sphere and applies only to the elastic case.

Reference 5-17 offers closed form solutions to the
elastic-plastic response of thin spherical shells to internal
blast loading. In order for results to be obtained, solutions
to non-linear differential equations are required.

Reference 5-20 uses an energy method to obtain the
plastic response; however, this report does not consider the
effects of impulse and quasistatic pressure simultaneously.

For additional design information, references 5-21
and 5-22 discuss spherical chamber component parts, fabrication
techniques, and test results for the Group 6A and 6B shields.
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5.6 ILLUSTRATIVE EXAMPLES

5.6.1 Response of the Group 3 Suppressive Shield Wall

a. Given

A 48.8 pound charge of Pentolite is detonated
inside the Group 3 Suppressive Shield. The Group 3 Shield is
a cylindrical structure with a flat reinforced concrete roof
and floor. The cylindrical body of the structure is fabricated
from 296 interlocking S3x5.7 I-beams. The inner layer of
I-beams has an inside radius of 5 feet 7.5 inches. The inside
height of the structure is 10 feet. A layered steel rein-
forcing ring is placed around the outer circumference of the
body at a distance of 5 feet above the floor.

b. Find
The maximum response of beam elements in the
wall of the shield to airblast loading.

c. Solution

The first step is to determine the blast loading

seen by the wall. The TNT equivalent for Pentolite is given in

Table 3-1 as 1.129. The equivalent charge weight of TNT from
Eq. 3-1, pg. 3-4 is

W =1.129(48.8) = 55.1 1b TNT

and

1/3 1/3

W = 3.805 1b
The scaled distance from the charge to the mid-height of the
wall) from Eq. 3-2, pg. 3-6 is

R = 2:025 _ 1478 fe/1pl/3

7 = = =
W1/3 3.805

Values of peak reflected pressure and scaled specific impulse
a function of scaled distance are plotted in Fig. 3-6. For 2
1.478 £t/1p%/3

Pr = 3350 psi

as
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and
ir | 1/3
W1/3 = 0.111 psi-sec/lb
or
ir = 0.422 psi-sec

The duration of the reflected pulse is obtained from Eqg. 3-4.
pPg. 3-14. ' ‘

tr = 2ir/Pr = 0.00025 sec

The peak quasi-static pressure is found from Fig. 3-9. For

$-= 55'12 = 0.0554 1b/ft>
m(5.625)2(10)
P__ = 187 psi
qsmax

To determine the duration of the quasi-static pressure, the
vent area ratio, Oy of the structure must be found. Only
the cylindrical wall provides venting. An idealized repre-
sentation of the interlocking I-beams which make up the wall
is shown below. Referring to Fig. 3-7(4d),

ol 1k

i DV,

[
1.44'3 .44

2

Group 3 Shield Wall Section

a=c = 2(1.44 - Zﬁgi) = 0.55 inch

b= 1.44 - 3:33 ~ 0.5(0.19) = 0.179 inch
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Then,
A_ = 2%n_a, = 2(120) (148) (0.55) = 19,358.4 in?
vl a 1
A, =a_ =2wnb, = 2(120) (148) (0.179) = 6358.1 in?
2 v3 b7 1
A, < 2tn_c, = 2(120) (148) (0.55) = 19,358.4 in’
4 c1 \
A, = nL(2.33 + 0.545) = 148(120)2.875) = 51,060 in?
and AV
0y = 1 _ 19,358.4 _
%1 T %4 A 51,060 0.3791
AV
— o - V2 _ 6358.1 _
%27 %3 T &~ 7 5I,060 - 0-1245
From Eq. 3-5, pg. 3-15,
1 =~ 1 1 1 1
o = :E: %, T 0.379T T o.1245 T o-1245 T 03797 = 21.34
e 0 p i
i=1
or
a, = 0.0469

The scaled maximum pressure is

5. as * Po _ 187 + 14.7

P° 14.7

= 13.72

The interior surface area of the shield wall is

A, = 2mrh = 2(3.14) (5.625) (10) = 353.43f¢>
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From Fig. 3-10 for a scaled maximum pressure of 13.72, the

scaled blowdown time is

t aoaeAi/V = 1.23

b

Substituting the known parameters

V = volume of structure (994 ft3)

a, = vent area ratio (0.0469)

Ai = surféce area of cylinder wall (353.43 ft2)
ag = sound velocity in air (1117 ft/sec)

and solving for tb’ it is found that the blowndown time is

tb = 0.066 sec

The blast pressure loading on the wall of the
structure is approximated by a double triangular pressure pulse

as shown below.

3350
-~
a
0
N
3
o
0
E’.
-y 187
—— N ————
0.00025 Time, sec 0.066

Blast Loading of Group 3 Shield I-Beam

_ 3350 - 187 _
1 - 3350 0.944

C

_ 187 _

The structure responds dy-
namically to both the reflected pressure pulse and the quasi-
static pressure. Response of the wall is determined by
considering an individual I-beam. The beam is assumed to have
fixed ends and a span of 5 feet. Because of the arrangement



HNDM-1110-1-2

of the interlocking I-beams, the effective width over which
the blast load acts is assumed to be 1.44 inches per beam.
(See previous sketch of Group 3 Shield wall section).

The section and material properties of the
S3x5.7 beam are (Ref. 5-2)

w = 5.7 1b/ft E =29 x 10° psi
I = 2.52 in4 fy = 36,000 psi
S = 1.68 in° £4, = 39,600 psi(Table 4-1)

L =5 ft = 60 inches

The natural period of a beam fixed at both
ends is obtained from the expression for natural frequency in

Fig. 5-8, i.e.,

Ty = 2T _ o.28L2/%/EIg
N .

where
w = weight,'lb/in = 0.475 1lb/in

gravitational acceleration, in/sec2 = 386 in/sec2

g

For the beam only, the natural period is

T, = 0.28(60)2V%.475/[29(10)6(2.52)(386)]

= 0.00414 sec

The maximum resistance of a uniformly loaded

beam fixed at both ends is given in Table 5-3 as

l6
Rpn = 7T
where the plastic moment
MP = fdyz

Then the unit resistance (resistance per square inch of beam) is
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_ ledyZ
T 2
m bL
where

VA = plastic section modulus, 1.932 in3
fdy = dynamic yield strength, 39,600 psi
b = effective beam width, 1.44 inches
L = length, 60 inches

Substituting in the above equation, it is found that

rm = 236 psi

The ratios tl/TN and tz/TN for the two triangles of the loading
function meet the criteria for use of Eq. 5-55, pg. 5-58 to ob-

tain the structural response, i.e.,

5

CqP /T C,P./r
C— + =1
Tn T 1
mey el S /2T ¢ 2B
1 ntz TN
1+0.7E~
2
where
r. = maximum unit resistance of member, psi
Pr = maximum pressure, psi
t, = time of duration of first pulse, sec
t2 = time of duration of second pulse, sec
4 = ductility ratio
C, = ratio of peak pressure of first pulse to maximum

pressure

C, = ratio of peak pressure of second pulse to maximum

pressure

A solution of Eq. 5-55 is obtained by trial
and error. Successive values of y are assumed until Eq. 5-55
is satisfied. A table may be set up as follows:
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. 2 ﬁ
‘zial No. }J (CyP./x /F]) C,P /r /Fy Sum of Terms
1 14 .239 .774 1.013
2 16 .208 . 766 968
:L 3 15 .223 .769 .932 0.K 3

Th= equivalent elastic deflection is given by

X =

R
_n
e
e

where, for the elastic-plastic range

K =XK_ = 307EI from Table 5-3
e E L3
X = 16MP
m L
Then,
16M_1.2 | 2
X = P ~ 16(1.15) (1.68) (39,600) (60)
e 307EI

307(29 x 10°) (2.52)

0.1964 inch
Maximum deflection is found from

Xm = uXe = 0.1964u

and maximum strain is found from

£
- - ay _
sm = euy =y B 0.00137u

Substituting the calculated ductility ratio of 15, the maxi-

mum deflection and strain for a beam are 2.95 inches and

0.02 inch/inch, respectively.

5.6.2 Numerical Integration Technique for Determining

Response of a Steel Beam Subjected to Blast Loading

a. Given

A Group 3 Shield S3x5.7 I-beam 60 inches long,
fixed at both ends, and subjected to the blast loading deter-
mined in illustrative example 5.6.1. Although a multiple degree
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of freedom analysis of the beams using the numerical integration
technique would provide more detailed information, it would re-
quire a computer. The approximate single degree of freedom

approach is used here.
b. Pind

(1) The time at which the beam begins to yield,
(2) the load acting on the beam at time of yielding, and (3) the
maximum displacement of the beam by numerical integration.

c. Solution

The equation of motion for an elastic equiva-
lent single degree of freedom system is given by Eq. 5-30, pg.
5-32.

KLMMtX + KX = Ft(t)

where

=
"

LM the load-mass transformation factor

total mass of the real element, lb—secz/in

M, =
K = elastic spring constant, 1lb/in

F, = total load acting on element, 1b
i = acceleration of the mass, in/sec2
X = displacement of the mass, inches

The total mass of the beam is

The load mass factor, K is given in Table 5-3 as 0.78. The

LM’
ffective spring constant, Kp» is also given in Table 5-3.

_ 307EI _ 307(29) (10)%(2.52)
ET T3 603

K = 103,868 1lb/in
Equation 5-60, pg. 5-62, is used in the numeri-
cal integration process,

Fo(t) - KgX  pi4) - 103,868%

KLMMt 0.05759

5-72
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The total force acting on the beam is the product of the blast

pressure times the effective area over which the pressure acts,

i.e.,
Ft(t) = PtLbe
where
Pt = blast pressure at time t, psi
L = length of beam, inches
be = effective width of beam, inches

At each time interval in the numerical integration process, the
total force is calculated using the blast pressure loading from
example 5.6.1, a beam length of 60 inches and an effective width

of 1.44 inches.  The numerical integration technique also requires
the use of Egs. 5-61 and 5-62, pg. 5-62.

Xpv1 =% Y 7 (X, + Xn+1)

‘ 2
_ o (At) . . v 2
X4l = X, t AtXn + 5 Xn + B8 (Xn+1 Xn)(At)

where the subscripts n+l indicate values of X, X and X at the
time t+At. B = 1/4 is assumed for this example.

At t = 0, it is assumed that the beam has a
velocity and displacement equal to zero. The applied force
at t = 0 is

Ft = PtLbe = 3350(60) (1.44) = 289,440 1b

The acceleration of the mass is given by

X = ELA- 103,868X
0.05759

= 5,025,813 in/sec?

For the next step, the acceleration is assumed to be equal to
that calculated from the initial step. Then from Eq. 5-62

with Xn = xn = 0, At = 0.0001 sec and xn = Xn+l = 5,025,813

in/sec?2,
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X = 0 + 0.0001(0) +

02
(0.0001)
n+l 5 (5,025,813)

0.025129

and the calculated acceleration at t = 0.0001 is

F, - 103,868X

t _ 173,664 - (103,868) (0.025129)

0.05759 0.05759

= 2,970,166 in/sec2

Obviously, the initial assumption for the acceleration was in
error. The calculated value is used as the new assumed accel-
eration, and the calculations are repeated until the calculated
value agrees with the assumed value within the desired degree

of accuracy.

The velocity is calculated from Eg. 5-61 using
the last cycle value of acceleration.
. - Ar T .
X+1 = %a2 vt 7 (X, *+ Xp41)
These calculations are summarized in a following table entitled
Numerical Integration Summary. A similar process is repeated
for each time increment with the acceleration calculated for
the previous time step used as the initial assumed acceleration

for the next.
The calculations are repeated until the dis-
placement reaches the yield displacement '

X =

R
_n
E K

E

From Table 5-3, the maximum resistance is

dy” _ 16(39,600) (1.932)

R T 60

m

16MP lé6f, 2
L =3

20,401 1b
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and the effective spring constant is

x_ = 307EI

E L3

= 103,866 1lb/in

Therefore, the displacement at yield is

20,401

Xp = 103,866

= 0.1964 in

The yield displacement is reached at t = 0.0004115 seconds.

The load acting on the beam at time of yielding is 16,056 1b.
In the plastic range, the acceleration is ob-

tained by rearranging Eg. 5-31, pg. 5-32.

F(8) = R _ F(t) - 20,401
0.05759 0.05759

X =

The load during this time period is defined by

F(t) = (— 01322 t + 187)(1.44)(60) = 244,800t + 16,156

The maximum deflection, Xm, occurs when the velocity is zero.

Therefore, from Eg. 5-61

. At .
0 =X_ + (xn+x

n 2 )

n+l
Substituting, with At = t - 0.0004115,

(t - 0.0004115)

0 = 614.9642631 + >

[.75'526_79142 N (—244,800t + 16,156.8 - 20,401.92)]

0.05759
Solving,
t_ = 0.007243
m
At = 0.006832
X = =-104,499.67

The maximum deflection is found using Eq. 5-62.

X

= v v 2
n+l - Xn + Atxn + xn) (At)

—
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Substituting,
X 41 = 0-1964574085 + (0.006832) (614.9642631)

2
+ 10-008832) (_75,526.79142)

+ %(—104,499.6704 + 75,526.79142)(0.006832)2
Solving,

Xn+1 = 2.295 inches = maximum deflection

Similar results could have been obtained by sim-
ply continuing the numerical integration process demonstrated in
the summary table. For this example, the direct solution for
t and X ~was more convenient.

5.6.3 Design of Roof Slab for Group 3 Type Suppressive
Shield (Type I Construction Ref. 5-5)

a. Given

The same structure description and airblast
loading as for illustrative example 5.6.1.

b. Find

Design a reinforced concrete roof slab for
the shield using a ductility ratio of 6 (Ref Table 4-3).

c. Solution

Based on the airblast loading parameters of
example 5.6.1,

ir = 0.422 psi-sec
_ 3350 - 187 _
€1 = T 3350 = 0.944
187

C2 = 3350 = 0.056

Some structural properties must be assumed or
specified to start the design process. The designer can (1)

assume trial section properties based on intuition or (2) use

whatever aids are available to guide his choice of trial section
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properties. The latter approach is chosen for this example.
Since the quasi-static load is of fairly long duration, Eq.

5-37, pg. 5-53, might be used to obtain an initial estimate of
the required R . The reflected impulse and the decay in pressure
are neglected for this estimate.

= 2 T 205) } ;
T, = Pso[Zu-l] = 187[2(5)_1] = 207.8 psi

Select a somewhat lower resistance, e.g., 200 psi, for the first
trial because of the anticipated larger influence in the decay in

pressure, The following material properties are assumed from
Table 4-1 and Table 4-2 for design purposes.

vt = ;
fc 5000 psi

Concrete

féc = 6250 psi

f_ = 60,000 psi
Rebar | Y

fdy = 72,000 psi
Structural fy = 36,000 psi
Shapes

fdy = 39,600 psi

If the ends of the side wall beams are rigidly
attached to the roof slab, they will provide some restraint of
the outer edge of the slab. The moment capacity of the S3x5.7
beams is given by

£ ay? _39,600(1.932)

Mps = Beam Spacing 1.44

= 53,130 in-1lb/in

From Table 5-8, the maximum resistance of a circular slab with
fixed edges 1is
Rm = 18.8(MPc + MPs)

Assuming the moment capacity of the slab at its
edges is equal to the resistance provided by the beams, taking
the radius of the slab to be 67.5 inches and R, = r A, the re-

quired moment capacity at its center is

w
|

78
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_ 2007r(a/2)2 - M
Pc 18.8 Ps

=
!

_ 200(3.14) (67.5)°

= 18,8 - 53,130 = 99,145 in-1b/in

In order to determine the required depth of the
slab, a reinforcing steel ratio must be assumed. Try
p = As/bd = 0.01
Equation 5-7, pg. 5-13, gives the moment capacity of a rein-
forced concrete member as
f
_ 2 - dy
MP = pfdybd [l 0.59p fé ]
c
This equation may be solved directly for "d" but by manipulating,

Equation 5-7 as shown above the following simple substitutions

allow an easier solution.

¥ )
m=—9Y - __ 66000 = 12.423
0.85f 4 (0.85) (6250)
_ _pm| _ _(.01) (12.423)
K, = Pfgy, [1 g-] = (9.01)(66000)[} > .]
= 619.004
2 M C
bd® = £ where b = 1"
‘ u
_ 99145 _ .
d = eT5-357 = 12-65

Normally, the 12.65 inches would be rounded off to some practi-

cal depth like 13.0 inches; however, it will be retained for
our first trial section.

From Eq. 5-8, pg. 5-14, the moment of inertia of
the slab is '

3
bd
Ia == [5.5p + 0.083])

. : 3 /
1(12.
= 1U2:65)" (5.5 x 0.01 + 0.083] = 139.68 in%/in

From Eq. 4-1, pg. 4-6, the modulus of elasticity for 150 lb/ft3
concrete is

5-79
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_ 1.5 =
Ec = 33w /f(':

33(150) "2 (5000)%"% = 4.29 x 10° psi

From Table 5-8, the stiffness of the concrete slab is

« = 206EI _ 216(4.29 x 10°) (139.68)
a? (135)2

= 7,101,952 1lb/in

KLM = 0.65 (for elastic-plastic range)

Assuming an overall slab thickness of 16",
the total mass of the slab is

v - 16(3.14) (67.5) 2(150)

= - 2,,
t 1728(386) = 51.50 lb-sec“/in
From Eq. 5-33, pg. 5-32, the period of vibration of the slab is
i/2
a - an|]
N K

. 1/2
6.28[0'65(51'50)] = 0.0136 sec

7,101,952

The next step is to determine the response of
the slab to the blast pressure loading. The ratios to/TN
for the two triangular components of the loading function
indicate that Eq. 5-55, pg. 5-58, is the appropriate response
equation to use. '

-

c,p, C,P,
rm + "_".m -1
N T T 1 -2
Tty a1 4+ 2y
wtz 0.’7TN
1+ —
“2
Substituting,
0.944 (3350) 2 0.056 (3350)
200 . —_ 200 -
0.01L pr—— _ 1 _
3714(0.00025)" 20071 0,016  /rEyoT + — - 206
3.14(0.066) 1 + _0.7¢0,0136)
0.066

= 0.076 + 0.921 = 0.997
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Additional trials are not necessary in this case. A value
of r, = 200 psi results in a required moment capacity of
99,145 in-1b/in, d = 12.65 inches, I = 139.68 in%/in, K =
7,101,954 1b/in, Ty = 0.0136 sec and Eqg. 5-55 yiglds a sum
of 0.997.

The shear capacity of the slab depends on the
radial tension loads applied by the wall beams. If properly
anchored and/or attached to the wall beams, it might be assumed
that the circular col. base ptates and reinforcing steel in the
slab resist all radial forces and prevent tension cracks in the
concrete. On the basis of this assumption, the full effective
depth of the slab is available to resist the maximum shear force.
From Table 5-8, the dynamic reaction at the edge of the slab is

V = 0.36F + 0.64Rm

where :
Rm = 200(3,14)(67.5)2 = 2,861,325 lbs

For purposes of analysis, it is assumed that the load at the
time of maximum response is equal to the quasi-static pressure.
Then

F = 187(3.14) (67.5)% = 2,676,696 1bs
Substituting in the above equation,
Vv = 0.36(2,676,696) + 0.64(2,861,325) = 2,794,858 lbs
The reaction per inch of support is

2,794,858
2(3.14) (67.5)

Using the criteria of Ref. 5-7 determine the required.depth, 4,

= 6593 1lbs/in

for Aiagonal tension assuming ductile mode, The maximum allowab.-
chear stress with shear reinforcing is

Vo T ll.SVfé = 11.5\#000 = 813 psi

Solving for 4,

d = 6593 = 8.10 < 12.65 inches
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Next check the required depth of the roof slab for

a possible direct shear failure as determined by Eq. 5-9, pg. 5-14
Vg = ;% = O.l8f'c
As direct shear is a brittle mode of failure a ductility ratio of
only 1.3 (ref. Table 4-3, pg. 4-15) is allowed. Table 4-2 recom-
mends a 10% increase in the direct shear strength of members due
to rapid loading.
Substituting in Eq. 5-55, as noted on pg. 5-80,

the value of u of 1.3 and solving for a new r, we see that rn = 300

psi satisfies the equaticn

Determining our new shear reaction we have
'V = 0.36F + 0.64R
il

where
R = 300 (3.14) (67.5)° = 4,291,9874#
and
F =187 (3.14)(67.5)% = 2,861,3254
therefore
v = (0.36)(2,676,696) + (0.64) (4,291,987) = 3,710,4824#

The reaction per inch of support is

3,710,482

T3 T4) (67.5) = B753#/"
Solving for 4 from Eg. 5-9 and allowing for the 10% increase in f'c
\Y

= d - 8753  _ _
d = TT.1) (.18) (f[c) = (1.1) (.18) (5000) = 8.84 < 12.65 inches

Therefore bending controls the effective depth of
the roof slab. For an effective depth of 12.65 inches and
Mpo = 99,145 in-1b/in, the required steel ratio in the center
of the roof (top steel) is also found from Eq. 5-7.

f
_ 2 _ d
MPC = pfdybd E. 0.59p fgﬁ]

This equation may be solved directly for "p", but the following
simple substitutions allow an easier solution.

d 72000
Let 7 m = = = z Z3E 13.553

dc :



Pc 99145
bd (1) (12.65)

_ (2)(13.533)(619.569;]_
e [} 4\[1 - =550 = .0092

A_ = (0.0092) (1) (12.65) = .116 in’/in = 1.392 in’ft.
‘Use two layers #5 @ 5" c.c. (As = 1.44 inz/ft.)
Actual p = 1.44/(12) (1) (12.65) = 0.0095

The wall beams provide a resistance of 53,130
in-1lb/in and the moment capacity of the slab at the supports
must be at least equal to that. Assume'MPs = 55,000 in-lb/in.
For an effective depth of 12.65 inches, the required steel
ratio at the support (bottbm steel) is found from Eq. 5-7, pg. 5-13.

55.000 := p(72000(l)(l2.65)2)[; - 0.59p 122228
L4

oxr

= 0.0049 (say 0.0095 to provide additional re-
straint for radial reaction of wall

o]
{

beams.) See Example 5.6.6

A
S

0.0095(1) (12.65) = 0.120 in%/in

The allowable shear stress in the concrete is given
by Eg. 5-10, pg. 5-15.

-— | ]
v, = (1.8l + 2500pav_/m )

where ch/Mc must be less than 1.0, and Ve less than 3.5 fé
psi. Substituting previously calculated values,

ch/Mc = 12.65(6593) /55,000 = 1.52 >1. Use 1.0.

Then, /

v, = [1.9\/5000 + 2500(0.0095) (1)] = 158 psi < 3.5\/f, = 248 psi OK
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Therefore, the shear capacity of the concrete is
Vo = vcbd = 158(1) (12.65) = 1999 1b/in
The required shear reinforcing capacity is
V. =V_ =-V_= 6593 - 1999 = 4594 1b/in
. s u c
The shear stress to be resisted by the shear reinforcing is

— 4594 - ) \/r——- _ '
Ve = TIy(Iz.gsy - 363 psi < 85000 = 566 psi OK
The size and spacing requirements are found from Eq. 5-11, pg.

5-15.
v - Dvfay
S

s
and

_ 4594
12.6(72000)

ol

= 0.0050 in%/in for a 1 inch slab width

In summary, the tensile reinforcing steel should be
0.120 inz/in at the center of the slab and at the supports. Ver-
tical shear reinforcing should provide 0.0050 inz/in2 of slab
surface area near the support. The overall depth of the slab
must be sufficient to provide proper protection for the rein-
forcing steel and will depend upon the size and number of layers
of reinforcing. This preliminary design could be made more con-
servative by neglecting the shear strength of the concrete in
computing shear reinforcing requirements. It is possible that
radial loads applied to the slab could cause cracking of the
concrete and loss of shear strength, so care should be taken in
detziling the reinforcing steel to assure full development of
all bars through adequate embedment or mechanical anchorage.
See Example 5.6.6 for reinforcing requirements due to radial
loads applied by wall beams.
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5.6.4 Analysis of Shield Group 6A Design

a. Given

Shield Group 6A is a sphere with an inside
diaﬁeter of 2 feet and a wall thickness of 1/4 inch. The shield
is designed for a 13.63 ounce charge of Pentolite. It is made
from mild steel with the following properties.

6

E = modulus of elasticity, 29 x 10° psi

v = Poisson's ratio, 1/3

fdy = dynamic yield strength, 39,600 psi

4 4

o = mass density, 7.36 x 10~% 1b-sec?/in
b. Find
The straih and deformation due to detonation of
the design charge weight.
c. Solution

The equivalent TNT charge weight for 13.63
ounches of Pentolite is obtained from Table 3-1 and Eg. 3-1, pg.
3"4.

W = 13.6312-129) = 0.962 1b TNT

and

1/3 1/3

= 0,987 1b
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Assuming the charge is at the center of the shield, the scaled
distance to the wall is

2 = rwt/3 = 1/0.987 = 1.013 £t/1b/3

From Fig. 3-6, the peak reflected préssure, Pr' is 7000 psi and
~the scaled impulse is

1/3 1/3

ir/w = 0.2 psi-sec/1b

Then
i_ = 0.197 psi-sec

r
and

tl = 2ir/Pr = (2)0.197/7000 = 0.000056 sec

From Fig. 3-9, for

W= 0,962 _ 3
7 7188 0.230 lb/ft
P = 485 psi

The blast pressure loading on the spherical
chamber is as shown below. As indicated in the loading diagram,
little or no venting would occur in this shield.

-~ 7000

485

Pressure, psi

\

.000056 Time, sec

Blast Loading of a Group 6A Shield
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_ 7000 - 485 _

c, = =555 = .931
_ 485 _

C, = =555 = -069

The structure responds dynamically to both the
reflected pressure pulse and the quasi-static pressure. Assume
the spherical chamber responds only in its fundamental mode of
vibration, a simultaneous radial motion of all points on its
surface. The natural period of the sphere is then obtained from

Eq. 5-24, pg. 5-26, i.e.,

n 2E

where
a = radius of sphere, 12 inches

The natural period of the sphere is

4y 102 1/2
T - on [}7.36 x 1074 (12) (.667)']

(2) (29 x 10°)

.000219 sec

Assuming thin shell response, the unit resistance
of the sphere is determined from Eq. 5-17, pg. 5-20, i.e.

r a
£ _ m
dy 2 t
whére ¢
r.m = unit resistance, psi
t = wall thickness, .25 inches
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Therefore

r = (2) (39600) (.25) _ 1650 psi

12

The next step is to determine the response of
the sphere to blast pressure loading. The loading diagram
indicates that Eg. 5-54, pg. 5-57, is the appropriate equation

to use.
cl Pr/rm 2 C2 Pr/rm
+ = 1
TnAf2u - 1 1 -
— H
ﬂtl

The use of the charts of Appendix B simplifies
the solution to this equation. From Fig. B-34, pg. B-40, for

Cy = 0.93 and C, = 0.07 with

Pr/rm 7000/1650 = 4.24

tl/TN .000056/.000219 = .256

the ductility ratio, u, is determined to be approximately 7.8.

The radial deflection, Xe’

chamber at the membrane yield stress is from Ref. 5-18.

of the spherical

L
II

(£4,) (a) (1-v) /E
(39600) (12) (.667) /(29 x 106) = .01l inches

The maximum deflection is found from

xm = uxe = (7.8)(.011) = .086 inches
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5,6.5 Response of Removable Column in 8l-mm Suppressive
Shield

a. Given

The Milan 8l-mm suppressive shield is a steel
frame and panel structure with inside dimensions of 14 feet by
14 feet by 12.4 feet. All vertical frame members (except cor-
ners) are 8 x 6 x 1/4 structural steel tubing. Horizontal ceil-
ing members are 8 x 6 x 3/8 structural steel tubing. Panels are
mounted from the inside and restrained against the frame. One
of the vertical frame members is removable to provide a larger
access opening into the shield. Pages A-86 thru A-118 provide
details of this shield.

A charge eqguivalent to 5.25 pounds of TNT is
assumed to be located at the center of the shield. The ef-
fective vent ratio for the shield is Ooff = 0.043. The volume
of the structure is 2430.4 ft3 and the vented surface area,
Ao 890.4 ftz. Atmospheric pressure, Po’ is assumed to be

14.7 psi, and the sound velocity in air, ags is 1117 ft/sec.
b. Find

The maximum axial tension in the removable

column and its bending response to the blast loading.
c. Solution

The first step is to compute blast loads for
both the roof and walls. For the roof, the scaled distance
is

z = rowt/3 = 6.20/5.251/3 = 3.57 £r/11/3

From Fig. 3-6, the peak reflected pressure, P, is 230 psi.
Scaled reflected impulse, ir/Wl/3, is 0.045 psi-sec/lbl/3.
Therefore, the impulse is

ir = 0.045(1.738) = 0.078 psi-sec
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The duration of the reflected pulse is obtained from Eq. 3-4,
pg. 3-14.

tr = 2:Lr/Pr = 2(0.078) /230 = 0.00068 sec

For the walls, the scaled distance is

z = Rowt/3 = 7/5.251/3 2 403 £e/10173

and from Fig. 3-6

Pr =175 psi
ir/Wl/3 = 0.038 psi-sec/1p}/3
ir = 0.066 psi-sec
tr = 21r/Pr = 0.00Q75 sec
For
W o_ 5.25

VT Iy (1e (1z2.4) - 0-0022 Ib/cf

Figure 3-9 indicates the gquasi-static pressure to be -

qu = 26 psi
Next, substitute
qu = 26 psi
Po = 14.7 psi

into the equation for scaled maximum pressure, pg. 3-23

P = (qu + Po)/Po = (26 + 14.7)/14.7 = 2.77

Using 2.77 as the ordinate to the plot of Fig. 3-10, it is
found that
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t aéaeAi/V = 0.48

b
Substituting
’aeff = 0.043
Vv = 2430.4 £t3
A = 890.4 ft2
i e .
a, = 1117 ft/sec

and solving for the blowdown time, it is found that

tb = 0.0272 sec

The shield panels are the primary means of transferring thé
blast pressure loads into the roof beams and side columns. As
a conservative check of the loads applied to the removable
column, assume that the panels are infinitel& stiff.

The roof beam is 168 inches long and has a
plastic section modulus, Z, equal to 27.02 inchesB. The beam
reacts the blast loads from two panels with a tributary width
of 55.5 inches. Based on this data, the airblast loads acting
on the roof beam are shown in the following sketches

Pr = 230 p511

qu = 26 psi

Pressure, psi

\ —

tl = 0.00068 Time, sec €, = 0.0272

Unit Airblast Loads Acting on the Roof Beam
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B = (230) (55.5) (168) = 2,144,5204#

(26) (55.5) (168) = 242,424%

Load, 1lbs.

tl = 0.00068 Time, sec _ t? = 0.0272

Total Airblast Loads Acting on the Roof Beam

The maximum tension in the removable column is equal to the
maximum dynamic reaction of the roof beam. The dynamic reaction
for the uniformly loaded fixed end beam is given in Table 5-3,

pg. 5-34,

Vmax = 0.38 Rm + 0.12F

The maximum bending resistance from Table 5-3 for the roof beam
fixed at both ends is

67 16) (27.02) (39,600
16ME l;fY (16) ( ) (39, )

— d — -
R, = T, = T, = 168 101,904 1b

The natural frequency of the roof beam is given in Fig. 5-8 as

- E I

mL
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where
E = modulus of elasticity, 29 x 106 psi
I = moment of inertia, 79.7 in.4
m = mass per linear inch of beam, 1b-secz/in2
L = length of beam, 168 inches

Since the panel weight is distributed along the beam, it must
also be included. The weight of a panel is 32.6 lb/ftz, and its
width is 49.5 inches. The 8" x 6" x 3/8" beam weighs 2.61 1lb/in.
The mass per inch is then ’

m = [2.61 + 422:30.032:0)1 /386 = 0.0358 1b-sec?/in?

and

6. 1/2
s [0l - o o

The natural period is

T =

N = 0.03116 sec

£y

The maximum tension in the removable column is equal to the
maximum dynamic reaction of the roof beam. From Table 5-2,
pg. 5-34,

Vmax = 0.38 R+ 0.12F

The total force, F, is time-dependent and its value at the time
the roof beam yields should be used in the above equation; how-
ever, for a conservative estimate, the total quasi-static load
is used. Since the natural-period of the roof beam is very much
longer than the duration of the peak reflected pressure, the.
peak reflected pressure is neglected.

5-93
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Therefore
Vmax = (0.38)(101,904) + (0.12) (215007) = 64,524 1g
The horizontal locad on the removable column is
applied through the panels in the same fashion as described
above for the roof beams. The removable column is.l49 inches
long and has a plastic section modulus, 2, equal to 18.66 in3.
Based on this data, the blast loading on the removable column

is shown in the following sketches.

,[;; Pr = 175 pSl
Q,
Q
5
[0)]
0
Q
Al P = 26 psi
gs P
t, = 0.00075 Time, sec t, = 0.0272

Unit Airblast Loads Acting on the Removable Column

B = (175) (55.5) (149) = 1,447,163%

(26) (55.5) (149) = 215,0074#

Ioad, lbs.

tl = 0.00075 Time, sec | t2

Total Airblast Loads Acting on the Removable Column

= 0.0272
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From the sketch,

C.

1= (1,447,163 - 215,007)/1,447,163 = .852

C 215,007/1,447,163 = .148

2

The column is assumed to be simply~-supported at
the base and fixed at the roof. From Table 5-3, the maximum

bending resistance of the column is

12 M 12 2 fqy (12) (18.66) (39,600)

=——-—B= = -
Rm T T 179 : 59,512 1b

The natural frequency of the element is given in Fig. 5-8 as

I
w, = 15.4\ /—
N mL4

where .
E = modulus of elasticity, 29 x 106 psi
I = moment of inertia, 58.4 in '
m = mass per linear inch of beam, lb-secz/in2
L = length of beam, 149 inches

As with the roof beam, the panel weight is distributed along the
beam. The weight of a panel is 32.6 lb/ftz, and its width is
49.5 inches. The 8" x 6" x 1/4" column weighs 1.84 1lb/in. The

mass per inch is then

m = [1.84 + 43:0 ‘37"6)] /386

2,.. 2
142 0.0338 1lb~sec”/in

and

wy = 155.276 rad/sec
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The natural period is

T. = E— = 0.04046 sec
N w
N
The response of an elastic-plastic system to
short duration and quasi-static triangular pulses is given by
Eq. 5-55, pg. 5-58.

2 prmass ——
C, B/R C, B/R
1 m + 2 m = 1
1
T T 1 - =—
N ‘VZu— 1 N 2y - 1 + 2y
ﬂtl ﬂtz TN
l1 + 0.7 —
t)

Rm = maximum resistance of member, ib

B = maximum load on member, 1lb

T,, = natural period of element, sec

t, = time of duration of short pulse, sec

t, = time of duration of quasi—étatic pulse, sec
p = ductility ratio ‘

c, = ratio of the peak short duration force to the peak
total force

C, = ratio of peak quasi-static force to the peak total
force

A solution of Eq. 5-55 is obtained by trial and
error. Successive values of yu are assumed until the equation
is satisfied. Only the final calculation for u = 23.8 is shown
below. '

5-96
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2
0.852(1,447,163)
59,512
0.02048  Af2(23.8)-1
3.14(0.00075)
B -
(.148) (1,447,163)
. 59,512
" 1
0.04046 /V[ 1 - 3(23.8)
2(23.8) - 1 +
T TZ(0.0272 (0. 04036)
i ) 1+ 0.7 oy

= 1.005

The egquivalent elastic displacement is given by

where for the elastic-plastic range

Kp = l§9§§£ from Table 5-3
L
or
6
K, = 60 (29 x 107)(58:4) _ 41,917 1p/in
(149)
then
_ 59,512 _ ;
XE = 37517 t 0.726 inches
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and the maximum displacement is

- — — n
X, = vXgp = 23.8 (0.726) = 17.3
Based on the assumption of infinitely stiff panels, the maximum
displacement is conservative. A less conservative approach
would involve determining the dynamic reactions of the panels

as loads on the roof beams and columns.

5.6.6 Analysis of Base Plate Ring and Reinforcing Steel
in Foundation Slab for Group 3 Suppressive Shield

a. Given
The same structure description and pressure
loading as for illustrative example 5.6.1. The base plate
ring has an outside diameter of 149 inches and an inside
diameter of 128 inches. It is 1 inch thick. Pages A-12 thru
A-27 provide details of the Group 3 Type Shield.

b. Find

The required reinforcing steel to resist the
wall beam reactions.

c¢. Solution

Assume that the annular base plate and top
rebars resist the entire radial load applied by the wall beams.
From Table 5-3, the dynamic reaction at the ends of the inter-
locking I-beams is

vV = 0.38Rm + 0.12F

where
16M 162f )
P 1 .932
Rm = T = T dy . 16(1 920)(39'600) = 20,401 lb/beam

Since the natural period of the I-beam is much longer than
the duration of the peak reflected pressure, only the quasi-
static pressure load is considered in determining the load.
Then

5-98
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F = 187(1.44) (60) = 16,156 1lb/beam
Substituting in the above equation. for the maximum reaction,
vV = 0.38(20,401) + 0.12(16,156) = 9,692 lb/beam
There are 296 beams at an effective diameter of 135 inches.
The equivalent uniform radial load is

(load/beam) (number of beams) _ 9692(296)
circumference of ring 1357

P = = 6764 1lb/in

The elastic deflection of the outer radius of the ring under
a uniform radial pressure is (Ref. 5-18)

R 2 R,
T qEO R? —lR‘?
o i
where
Ro = outer radius, 74.5 inches
Ri = jinner radius, 64 inches
E = modulus of elasticity, 29 x 106 psi
g = uniform radial pressure, psi

The pressure q is multipiied by the 1 inch height, h, of
the ring to obtain the radial load per inch of circumference

of the ring, i.e.,

gh = FR = radial load per inch of ring
or
R R
1% % 1.0
Substituting
o FR(74.5) 2(64)2
Uy © 6 2 2
1.00(29x10°) [(74.5)" - (64)
u_ = 14.471 x 10°° F
r ° R
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The elastic deflection of the reinforcement is

FgL  FgRy  (74.5)Fg -6 Fp
L T N 3 = 2.569(10) .
S S 29(10) AS S
where
Fp = radial load carried by the reinforcement per inch
of circumference assuming no radial deformation due
to bending :

AS = cross sectional area of reinforcement available to
resist tensile loads per inch of circumference

The area of reinforcement available to resist tensile forces
is determined from example 5.6.3, pg. 5-82.

A (.0095 - .0049) (1) (12.65) = 0.058 inZ/in

S

Therefore

]

-6 :
_ 2.569(10) - -6
u, = RO SB = 44.293(10) F

B

Since the base plate and top layer of reinforcement are assumed
to act together,

r
-6 _ -6
44,293(10) Fp = 19.295(10) Fr
Fp = 2.30FB

The above ratio of loads per inch of circumference in the ring
and reinforcement is only good in the elastic range. The

dynamic yield stresses for the ring and reinforcement are given
in Table 4-1, pg. 4-5.

fdyR = 39600 psi for the ring

£

dyB 72000 psi for the reinforcement
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The first step is to determine whether the combination of
~—— ring and reinforcement can resist the radial tension loads in

the elastic range,

F_ + F, =P

B R
FB + 2.30 FB = 6764 1b/in
FB = 2050 1lb/in in the reinf.
then
Fp = 4714 1lb/in in the ring

The stress in the reinforcement is

F
vV = B

B A

= 35345 psi< 72000 psi
S )

The maximum stress in the steel ring is given by Case la,
s page 504, Ref. 5-18.

S~ 2
. Fo| 2R,
R 1 2 2
Ry - R;
2
4714 2(74.5)

1

5 5| = 35,983 psi < 39,600 psi
1.0 (74.5)° - (64)

The stresses for both the ring and reinforcement are below the
yield point, so the combined system is adequate to resist the
radial beam reactions.

An economical redesign would allow the ring;
with its lower dynamic yield stress, to respond in the plastic
range. This would allow a reduction in the reinforcing steel.
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In general the reaction of the ring and
reinforcing steel to the radial tensile loads could be developed
in three stages.

l. The elastic range response for both the ring and
reinforcement.

2. The combination of plastic range response for the
ring (fdyR = 39600 psi) and the elastic range for

the reinforcing steel (Vmax < fdyB = 72000 psi).

3.. The plastic range response for both the ring and
reinforcement.

5.6.7 Design of Upper Connection for Removable Column in
8l-mm Suppressive Shield

a., Given

The Milan 8l-mm suppressive shield is a steel
frame and panel structure with inside dimensions of 14 feet by
14 feet by 12.4 feet. The side columns in the shield area are
8 Xx 6 x 1/4 structural tubes. A description of the shield and
its design parameters are given in Example 5.6.5.
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b. Find

Using the loads derived in Example 5.6.5, ana-
lyze the upper connection of the removable column. Assume the
upper end of the column is fixed and the lower end is simply
supported. The upper connection is located 1 foot below the

roof beam.
c. Solution

Without a finite element dynamic analysis of
the shield, it is difficult to predict the exact phasing of
the various axial and bending components of loads applied to
the connection. For this reason, the analysis presented here
evaluates the connections ability to develop separately the

columns full plastic moment, full axial load capacity, and the
combination of bending plus axial load from Example 5.6.5.

Details of the upper connection are shown below.

6"x1"x1'-3" plt _‘
* P la— Top Beam (8x6x3/8;

2 | e - 1"
Edge of Beam

.

~ o T+Q-ﬂ—g 1/4
4 1Y notes ] | s side Col.
16 Pne-es ] | P (8x6x1/4)
///
"
—— PV=nT
11.0"
1-5" b
o—6 T+0 ~—F
2.0" a
1'o" 4-1"¢ A490
. l\' ” » '5" - S
1.5 N\ 3 Vd 1 Bolts

Removable Column Upper Connection Details
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The axial load capacity of the column is

Pe = fdyA = 6.48(39,600) = 256,608 lbs

Approximate load per bolt without prying action is

_ 256,608 _ '
Pb =—7 = 64,152 1bs

The fully plastic moment capacity of the 8 x 6 x 1/4 column is

M, = £

P dyZ = 39,600(18.65) = 738,936 in—}b

The load per bolt without prying action for an 11.0-inch lever
arm is

_ 738,936

Py = D

= 33,588 1lbs

Bolt tension increase, Q, due to prying.action is found from Eqg.
13.6.37 of Ref. 5-3.

1_ _pt*
3 )
e 30ab%a,
B, " 4
%(f% + 1) t o=
6ab Ab

where, referring to the sketch of the connection,

p = 3 inchcs

a = 2 inches

b = 1.5 inches

A, = area of bolt = 0.785 in2

t =1 inch

Then
1 3(1.0)%
9 2 30(2)(1.5)2(0.785) - 0.228
B = ) .
b 2 ( 2 1) N 3(1.0)
L.5\3x1.5 6(2) (1.5)2(0.785)
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and bolt tension with prying action is

Pba = 64,152(1.228)

Pbm = 33,588(1.228)

78,788 lbs for pure axial load

]

41,251 1lbs for pure bending load

The most probable load is the axial tension ap-
plied by the roof beam acting simultaneously with. the ultimate
moment capacity of the column. The bolts will also be subjected
to a total shear equal to the column reaction. Because of the
proximity of the connection to the fixed end, the connection is
designed for the loads applied at that point. That is, M =
738,936 in-1lb and T = 64,524 1b.

From paragraph 5.6.5, the maximum resistance of
the column is 59,512 1lb, and the maximum horizontal load is

215,007 lbs (assuming only the quasi-static load component need
be considered). The dynamic reaction of the column at its up-
per (fixed) end is (Table 5-3)

v

0.38Rm + 0.12FV + MPS/L

0.38(59,512) + 0.12(215,007) + 738,936/149

53,375 1b
The shearing stress in the bolts is

- 53,375 _ .
fv 0 TBEY — 16,998 psi

The total bolt tension is

64,524
b 1.228[Pba + pbm]—l.zze[

Reference 5-2 allows a bolt tensile stress of

P

+ 33,588] = 61,055 1b

F, = 1.7[70 - 1.6fv]i 1.7(54)

1.7(70 - 1.6(17.0)] < 91.8 ksi

72.8 < 91.8 ksi
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Actual maximum tensile stress in the bolts is

61,055 _ . . P
£ = —-0—:—7-8—5 = 77,777 psi = 77.7 ksi > 72.8 ksi

and the bolts appear somewhat overstressed but will not be
changed at this time. Using an allowable tensile stress of
72.8 ksi, the capacity of each bolt is

Pb = 72.8Ab = 72.8(0.785) = 57.2 kips

The bending moment in the connection plate at the bolt line is

M= 0a = 0.228 [ﬂlgéi + 33,588] [2.o]= 22,276 in-1b

Subtracting the 1.0625-inch hole from the plate, the allowable
bending at the bolt line is

2 | '
v o fay® = 1-0625t" 39 600(3.0 - 1.0625) (1)2
all 4 4

19,181 in-1b
The bending moment in the plate at the face of the column is

M=Tb - Qa = EZLé%Zi

+ 33,588]1.5 - 22,276 = 51,002 in-1lb

Allowable bending at the column, assuming p = 6 inches, is

2
w - fayP® _ 39,600(6) (1.0)2
all ) Z

= 59,400 in-1lb

Therefore, bending of the plate is within the allowable limits
at the column line but exceeded at the bolt line. 1In view of
the conservatism of using end moments and shears in this analy-
sis, the plate is considered satisfactory.

The shear load per bolt is

vV = -5-31'—43-7—51 = 13,344 1b

The bearing stress is

f =_y_=..].“_3_~!_§9'_4.= 13,344 psi

5-106



HNDM-1110-1-2

The allowable bearing stress is

Fp = 1.35 £ = 1.35(39,600) = 53,460 psi

dy

5.6.8 Structural Response of Group 3 Suppressive Shield
Steel Hoop

a. Given

The steel hoop of the Group.3 shield is located
midway between the foundation slab and the roof slab. The hoop
is placed around the outer circumferénce of the cylinder to sup-
port the S3x5.7 interlocking beams. It consists of ten continu-
ous straps 5 inches wide by 1/2 inch thick to make a hoop cross

section 5 inches wide by 5 inches thick.

b. Find

3

The response of the steel hoop using the blast
loads given in illustrative example 5.6.1.

c. Solution

‘The first step is to determine the natural per-
iod of vibration of the hoop and that portion of the vertical
beams it supports. The vertical beams are assumed to be fixed
at the roof and foundation slab and supported at mid span by
the steel hoop. The weight of the steel hoop is

WR = pA = 0.283(25) = 7.075 1lb/in

From Table 5-3, one~third of the mass of the beam between sup-
ports is assumed concentrated at midspan for single degree of
freedom analyses. It appears logical to assume the remaining
two-thirds is distributed equally to each support. Since there
are two beams bearing on the steel hoop, assume that 2/3 of the
weight of a vertical beam is included in the weight of the steel
hoop. The additional uniformly distributed weight contributed
to the steel hoop by the beams is
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Wy = 2/3 Y=
Wy = 2/3(%ﬁ;) (60)(55%%%7§7> = 12,35 1b/in
where
w = weight of beam per inch
= length of beam, inches
N = total number of beams

R = radius to center of wall, inches
The total distributed steel hoop mass is

7.08 + 12.35

_ _ 2,.. 2
386 = 0.0503 lb-sec™/in

M=

The natural period of the ring is obtained from

,q1/2 | ,q1/2
T, = 2nE%§§] = 6.28[?'0503(22'5) ] = 0.0038 sec
29 x10° (25)

The maximum unit resistance of the ring beam is given by

_ Lo
m T LRy
where
fdy = dynamic yield strength, 39,600 psi
A = 25 in?
LB = supported length of beam,VGO inches
Ri = inside radius of structure, 67.5 inches
Substituting,

_ 39,600(25)
m  60(67.5)

r = 244.44 psi

From example 5.6.1, the peak reflected pres-
sure, Pr’ is 3350 psi and its duration, tyv is 0.00025 seconds.
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The peak quasi~-static pressure, qu, is 187 psi and its dur-
ation, tz, is 0.066 seconds. The ratio of the durations of
the two pulses to the period of the hoop are such that the
structural response of the steel hoop is found from

- ~2

ClPr C2Pr
r. r
T, | " q SR
Tt 2u-1 N Y2u-1 + 2y
L 1 _ ﬂtz TN
1+0.7E——
2
where
r, = 244 .44 psi
Pr = 3350 psi
t, = 0.00025 sec
t2 = 0.066 sec
Cl = 0.944
C2 = 0.056
TN = 0.0038 sec

A solution is obtained by trial and error and a ductility
ratio, p, of 15 was found to satisfy the equation. Substi~-
tuting in the equation

= 0.99 = 1.0

[ 0.944 (3350) ]2 + . 0.056(3350)
244 .44(25.987) 244.44(1.0277)

The circumferential stretching of the hoop at the elastic
limit is

fdyA(ZWRR)
L AE

_ 39,600(25) (6.28) (72.5)
25 (29) (10) ®

A_ = 0.622 inch
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and the radial deflection is

_ 0,622 _ .
AR = o o 0.099 inch

Since u = Xm/xy’ the maximum radial deflection of the hoop
is

Xm = 15(0.099) = 1.485 inches
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5.7 LIST OF SYMBOLS

a

AIAlIA27‘0'F

A
s

A_.
v

AVH

(1) side of square plate (inches)
(2) Plate dimension (inches)

Area (in2)
Area of tensile steel (inz)
Area of vertical web reinforcing (in2)

Area of horlzontal web reinforcing over dis-
tance S (in2)

(1) Wldth of cross section (1nches)
(2) Plate dimension (inches)

Peak total load (lbs)

Equation constants

(1) Effective depth of concrete member (inches)
Web depth (inches)

Diameter (inches) »

Modulus of elasticity (psi)

Static unconfined compre551ve strength of
concrete (psi)

Dynamic compressive strength of concrete (psi)
Dynamic tensile yield stress (psi)

Static tensile yield stress (psi)

Force (lbs)

Force on equivalent single degree of freedom
system (lbs)

(1) Total force (1lbs)
(2) Tensile load on bolt (lbs)

Time varying force (lbs)

Ratios of C,B/R_ for given load characteris-
tics and ductility ratio :

Force per unit length (1lbs)
Impulse (lbs-sec) /
Reflected pressure impulse (psi-sec)

Moment of inertia of beam or moment of iner-
tia of unit width of one-way slab (in®)

Average of gross and cracked moment of iner-
tia per unit width of concrete slabs (for
short span in two-way slabs) or plastic 2ec~
tion modulus of plate per unit width (in®)
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K,Kl,KZ,...,

e
K
ep

Keq

[ N
z .

I S

v

e RN R RN R R

TR R R B
8 QO o o

=
o)

=
)
Q

MPfa

Motb

Pm

Ps

"psa

Spring constant (1lb/inch)
Spring constant for elastic range (lb/inch)

Spring constant for elastic-plastic range
(1b/inch)

Spring constant of equivalent single degree
of freedom system (1lb/inch)

Equivalent spring constant (lb/inch)
Load transformation factor
Load-mass factor

Mass transformation factor
Resistance factor

Kinetic energy (in-1b)

Length (inches)"

Deformed rebar required development length
(inches)

Mass per unit length/area (lb~sec2/in2)
Mass (lb»secz/in)

Total mass of beam (lb—secz/in)

Total moment at critical section (inch/1b)

Mass of equivalent single degree of freedom
system (lb-sec?/in)

Ultimate bending moment capacity (inch/1bs)

Ultimate positive bending moment capacity
per unit width at center of circular slab
(in-1b/in)

Total ultimate positive bending moment capac-
ity along midspan section parallel to short
side, a (in-1b)

Total ultimate positive bending moment capac-
ity along midspan section parallel to long
side, b (in-1b)

Ultimate bending moment capacity of beam at
midspan (in-1b)

Ultimate negative bending moment capacity
per unit width at center of circular slab
or ultimate bending moment capacity of beam
at support (in-lb/in or in-1lb)

Total ultimate negative bending moment capac-
ity along short edge, a (in-1l1b)
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Ultimate negative bending moment capacity
per unit width at center of edge a in di-
rection of long span, b (in-1lb/in)

Total ultimate negative bending moment capac-
ity along long edge, b (in-1b)

Ultimate negative bending moment capacity per
unit width at center of edge b in direction
of short span, a (in~1lb/in)

Total mass of spring (lbmsecz/in)
Total mass (lb—secz/in)

(1) Pressure (psi)
(2) Tensile reinforcing steel ratio

Pressure as a function of time (psi)
Force (1lbs)
Maximum unit resistance (psi)

(1) Radius (inches)
(2) Resistance of element (lbs)

Elastic resistance (lbs)
Inside radius (inches)
Maximum resistance (1lbs)

Maximum resistance of equivalent single de-
gree of freedom system (1lbs)

Outside radius (inches)
Spacing of vertical web reinforcing (inches)

Vertical spacing of horizontal web reinforc-
ing (inches)

(1) Section modulus (in3)
(2) Slope of strain hardening curve

Thickness (inches)

Flange thickness (inches)

Time of maximum displacement (inches)
Duration of positive pressure pulse (sec)
Web thickness (inches)

Pulse durations (sec)

Natural period of vibration (sec)

Strain energy (in-1b)

Direct shear stress (psi)
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Vv

< < g4 9 € < <
tw B S o ux<m Q

<
[

<
[\

MM M X X
) ,

>
=] o
Q

o)

N X
3]

m ™
Q
v

Q © < T

Q

(1) Dynamic reaction at end or edge of sym-
metric element (1lbs)

(2) Total shear acting on section (lbs)
Ultimate shear force in concrete (lbs)

Total shear at support (1lbs)

Shear capacity added by shear reinforcing (1bs)
Ultimate shear capacity (1lbs)

Total shear acting on section (lbs)

Total dynamic reaction along one short edge,
a (lbs)

Total dynamic reaction along one long edge,
b (1lbs)

Dynamic reaction at hinged end of nonsymmetric
beams (1lbs)

Dynamic reaction at fixed end of nonsymmetric
beams (1lbs) '

Charge weight of explosive (lbs)
Displacement (inches)

Velocity (in/sec)

Acceleration (in/secz)

Elastic limit displacement (inches)

Displacement of equivalent single degree of
freedom system (inches)

Maximum displacement (inches)
Elasto-plastic displacement (inches)
Equivalent elastic limit displacement (inches)

(1) Scaled distance (Ft/1b°) 5
(2) Plastic section modulus (in7)

Strain (in/in)

Dynamic yield strain (in/in)
Ductility ratio

Poisson's ratio

Mass density (1b-sec2/in4)
Stress (psi)

Hoop stress (psi)
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o Longitudinal stress'(psi)
r Radial stress (psi)
Wy Circular natural frequency (rad/sec)
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